A Comparative Study of Genetic Algorithms Using a Direct and Indirect Representation in Solving the South African School Timetabling Problem

نویسندگان

  • Rushil Raghavjee
  • Nelishia Pillay
چکیده

Previous work applying genetic algorithms to solve the school timetabling problem have generally used a direct representation, in which each chromosome represents a timetable directly. This study proposes and evaluates a genetic algorithm employing an indirect chromosome representation. Each chromosome is a string comprised of instructions which are used to build a timetable. The fitness of each chromosome is a function of the hard and soft constraint violations of the timetable constructed using the chromosome. Tournament selection is used to choose parents which the mutation and crossover operators are applied to in order to create successive generations. The performance of the genetic algorithm using an indirect representation (IGA) was compared to that using a direct representation (DGA) in solving the school timetabling problem for a South African primary and high school. Both genetic algorithms were able to produce feasible timetables of good quality with the IGA performing better than the DGA. The difference in performance was found to be statistically significant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of Genetic Algorithms to Solve the School Timetabling Problem

This paper examines the use of genetic algorithms (GAs) to solve the school timetabling problem. The school timetabling problem falls into the category of NP-hard problems. Instances of this problem vary drastically from school to school and country to country. Previous work in this area has used genetic algorithms to solve a particular school timetabling problem and has not evaluated the perfo...

متن کامل

Solving Re-entrant No-wait Flexible Flowshop Scheduling Problem; Using the Bottleneck-based Heuristic and Genetic Algorithm

In this paper, we study the re-entrant no-wait flexible flowshop scheduling problem with makespan minimization objective and then consider two parallel machines for each stage. The main characteristic of a re-entrant environment is that at least one job is likely to visit certain stages more than once during the process. The no-wait property describes a situation in which every job has its own ...

متن کامل

Solving random inverse heat conduction problems using PSO and genetic algorithms

The main purpose of this paper is to solve an inverse random differential equation problem using evolutionary algorithms. Particle Swarm Algorithm and Genetic Algorithm are two algorithms that are used in this paper. In this paper, we solve the inverse problem by solving the inverse random differential equation using Crank-Nicholson's method. Then, using the particle swarm optimization algorith...

متن کامل

Solving a generalized aggregate production planning problem by genetic algorithms

This paper presents a genetic algorithm (GA) for solving a generalized model of single-item resource-constrained aggregate production planning (APP) with linear cost functions. APP belongs to a class of pro-duction planning problems in which there is a single production variable representing the total production of all products. We linearize a linear mixed-integer model of APP subject to hiring...

متن کامل

Generating Optimal Timetabling for Lecturers using Hybrid Fuzzy and Clustering Algorithms

UCTTP is a NP-hard problem, which must be performed for each semester frequently. The major technique in the presented approach would be analyzing data to resolve uncertainties of lecturers’ preferences and constraints within a department in order to obtain a ranking for each lecturer based on their requirements within a department where it is attempted to increase their satisfaction and develo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014